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LETTER TO THE EDITOR 

A Monte Carlo method for series expansions 

Deepak Dhart and P M Lam$ 
Institiit fur Theoretische Physik, Universitat zu Koln, D-5000 Koln 41, West Germany 

Received 7 July 1986, in final form 20 August 1986 

Abstract. We describe a simple and general algorithm to calculate series expansions in 
enumeration problems to large orders approximately by a Monte Carlo method. It can be 
used to generate unbiased samples in cluster studies, e.g. linear or branched polymers, 
random surfaces, etc, in any dimension. We calculate the number of site animals of size 
n on the square lattice for n s 50 and their average size to better than 1% accuracy. 

The analysis of series expansions has been a very powerful technique in statistical 
mechanics. These calculations have been pushed to quite high orders for many 
problems, and in many cases yield the most accurate known estimates of physical 
quantities of interest, e.g. the critical exponents [ 11. However, the computational effort 
needed to calculate the nth-order term increases exponentially with n, and one is 
usually restricted to studying n s 30 in two dimensions [2]. In higher dimensions the 
situation is even worse, and for three-dimensional systems, series with more than 20 
known terms are quite rare. Even if the asymptotic behaviour of the series is known 
theoretically in parametric form, precise estimates of the parameters such as critical 
exponents are hard to obtain from a short series because of significant corrections to 
scaling [3]. 

Often the calculation of series coefficients can be posed as an enumeration problem 
of some kinds of objects such as graphs or configurations (e.g. the linear or branched 
polymer problems). The exponential increase of the number of such configurations 
with their size n makes a brute-force enumeration infeasible for large n. 

In this letter we describe a simple algorithm, to be called the incomplete enumeration 
method, that allows an approximate determination of the number of configurations in 
enumeration problems by a Monte Carlo technique. The results obtained are only of 
finite accuracy, and are complementary to the exact series analysis because of the 
much higher orders reachable. While approximate values of high-order terms can be 
obtained by existing extrapolation methods such as exact series analysis or phenomeno- 
logical renormalisation, it should be stressed that the error bars in these estimates are 
purely subjective. The magnitude of correction to the assumed extrapolation form is 
completely unknown. By contrast, the errors in the high-order coefficients calculated 
by the present method are purely statistical, objectively determined and can be made 
arbitrary small. Of course, extrapolated quantities such as critical parameters still have 
unknown, though smaller, systematic errors. The computation time increases only as a 
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power of n, and an accuracy of better than 1% is easily obtained for n as large as 50. 
The algorithm generates an unbiased sample [4], and other configuration averages can 
also be computed. It gives a direct estimate of the number of configurations, and 
hence of entropy. 

As a test case, we studied the number of site animals A, on a square lattice, and 
their average moment of inertia In as a function of the number of sites n for 1 s n s 50. 
An accuracy of about 0.5% for ASo and about 0.13% for Is ,  required approximately 
20 h of CPU time on a CDC Cyber 175 machine. In contrast, the exact enumeration 
of AZ4 already needs 10 months of CPU time on a PDP-11/70 computer [5]t, and each 
successive order requires a four-fold increase in CPU time. On our machine, an exact 
calculation of AsO would require approximately 4 x lo2’ h. 

For concreteness, we shall describe the algorithm for this special case. Other 
enumeration problems can be handled similarly. For the enumeration of lattice animals, 
there is a well known deterministic algorithm using backtracking [5,1], and an elegant 
and short FORTRAN program using this algorithm has been published [6]. We describe 
it very briefly here. 

One starts by choosing a rule for designating for each animal configuration one of 
its sites as the last added site. Deleting the last added site from an n-site animal A, 
we obtain an ( n  - 1)-site animal A’, called the parent of A. The animal configurations 
are thus classified into a tree structure according to their lineage. The unique 1-site 
animal forms the root of the tree. The n-site configurations are at a height ( n  - 1) 
connected to their parents at height ( n  - 2) by single bonds. The exhaustive enumeration 
of all animals having n sites proceeds by a systematic exploration of the genealogical 
tree to height ( n  - 1) [6]. 

In the incomplete enumeration method, we arbitrarily choose a set of ( n  - 1) real 
numbers pi with 0 < p i  S 1 and i = 2 to n. Any configuration with r sites (2 4 r s n )  is 
defined to be ‘stillborn’ with probability (1 - p r )  and normal with probability p r ,  
independent of the state of all other configurations. We delete the stillborn configur- 
ations from the genealogical tree. All configurations which are descendants of stillborn 
configurations are also deleted. We then systematically enumerate the remaining n-site 
configurations in the genealogical tree. This can be done very efficiently using back- 
tracking. When a particular r-site configuration is first generated, one chooses to ignore 
it and all its descendants in the enumeration with probability (1 - p ? ) .  

The probability that a particular r-site animal will be enumerated in a given trial 
is p2p3 . . . p r  %‘n, (say), and is the same for all configurations with the same r. The 
algorithm thus generates an unbiased sample of configurations. The number of n-site 
animals generated in one trial is a random variable X , .  Averaging over several trials, 
we can estimate ( X , ) .  Since this equals rr,A,, we can estimate A, using Monte Carlo 
methods. 

By judiciously choosing p i ,  we can get ( X , )  to be close to 1. Then the percolation 
process on the genealogical tree is close to threshold, and the variance of X ,  increases 
slowly with n, and may be approximated as increasing like n“, where a is some 
exponent. For a genealogical tree with constant branching number, a can be calculated 
analytically, and one finds a = 1. For trees with variable branchings, a is harder to 
calculate exactly. To obtain the fractional error in A, less than E ,  the number of trials 
has to increase as &-’na for large n. Since the time required to generate an animal 

t The computer time could be decreased considerably by using a suitable generating function technique 
(see Sykes [ 5 ] ) .  
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increases linearly with n, the computer time to obtain a fractional error in A, increases 
as & - * n o + ' .  

The method may be viewed as constructing a site percolation process on the genealogi- 
cal tree, with the stillborn configurations as the blocked nodes on the tree. The 
enumerated configurations form the connected part of the tree. 

It is useful to contrast the Monte Carlo algorithm outlined here with those commonly 
used. The conventional method, as developed by Metropolis et a1 [7] relies on the 
construction of a Markov process whose time averages replace the ensemble averages 
sought. Averaging over the initial state may also be done [8]. This procedure gives 
rise to strong time correlations in samples and, in many problems of physical interest, 
the approach to equilibrium distribution can become very slow due to hydrodynamic 
slowing, or critical slowing or metastability [8]. Also it is not possible to determine 
thermodynamic quantities such as entropy or free energy directly from the simulations 
and these must be calculated by integration over temperatures. 

The present algorithm does not construct a Markov process, and the problem of 
correlations is much more manageable. Different configurations produced in a single 
trial are, of course, correlated with each other being more likely to share a common 
lineage. There is also a small anticorrelation since a configuration can occur at most 
once in a single trial (sampling without replacement). 

The variability of X ,  in different trials is crucial in keeping the sample unbiased, 
as is the case in the simple algorithm for generating self-avoiding walks by randomly 
generating an ideal random walk of n steps, and rejecting it if it is found to be 
self-intersecting. This algorithm is inefficient for large n, as the fraction of accepted 
configurations is very small. In the incomplete enumeration approach discussed here, 
a step that would lead to rejection makes the algorithm backtrack to attempt another 
allowed completion, and does not lead to a rejection of the full configuration. 

The basic idea of combining an enumeration algorithm with indeterminism has 
been discussed earlier by Redner and Reynolds [9] in the case of self-avoiding walks 
and by Yang et a1 [lo]. For the animals problem a similar algorithm was proposed 
by Lam [ l l ] .  However, the detailed algorithm used by Lam is not completely free of 
bias. The present algorithm differs from his by having a different rule for backtracking. 
His algorithm may try to generate some configurations more than once during the 
execution of the program (see figure 1). This makes the sample biased in favour of 
such configurations. Another source of bias in it is introduced by terminating a trial 
before completion as soon as some preset number of configurations has been generated. 

The approach is easily generalised to other enumeration problems such as linear 
or branched polymers in restricted geometries, random surfaces, etc. In each case the 
exponential growth of the number of configurations is curtailed by randomly pruning 
off branches in the genealogical tree of configurations. The technique can also be 

a b c d  

Figure 1. An example to illustrate the difference between the present algorithm and that 
given in [ l l ] .  We show two animals of size 4 on a square lattice. By Lam's algorithm 
[ 1 I],  the second animal may be generated by sequential occupation of sites a b c d or a c d b 
or a b d c ,  and thus is three times as likely to be generated in a single trial as the first 
animal. This bias is avoided in the present algorithm. 
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generalised to generate configurations with prescribed (unequal) weights (needed, for 
example, in study systems like the Ising model in the canonical ensemble). It is not 
suitable for determining the behaviour of non-leading singularities. A detailed analysis 
of the algorithm and additional numerical results will be published elsewhere. 

For the numerical study of site animals on the square lattice, we chose p r  = ( r  + 1)/4r 
for r 3 2, and averaged over 4 x lo7 independent trials. The mean number (X,,) obtained 
for n = 3-50 is shown in table 1. The standard error of estimate shown was obtained 
by grouping the data into 150 equal parts and calculating fluctuations about the mean 
value. The average moment of inertia I,, was calculated in a separate run of 4 x lo6 trials. 

Table 1. The mean number of animals generated per trial (X,) as a function of n. The 
estimated total number of n-site animals is A, =(Xn)4"-'2/(n + 1). 

n 

3 
4 
5 
6 
7 
8 
9 
10 
1 1  
12 
13 
14 
15 
16 
17 
18 

(X,) 

0.7497 f 0.0004 
0.7423 f0.0005 
0.7383 f 0.0006 
0.7382 f 0.0007 
0.7423 f 0.0008 
0.7479 f 0.0008 
0.7559 f 0.0009 
0.7645 * 0.0010 
0.7844 f 0.0012 
0.7741 f 0.0011 

0.7944f0.0013 
0.8053 k0.0014 
0.8 160 f 0.00 1 5 
0.8275 f 0.0016 

0.8515 f0.0019 
0.8393 f 0.0018 

n (X") n 

19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 

0.8641 f0.0019 
0.8765 f 0.0020 
0.8888 f 0.0022 
0.9019 i 0.0023 
0.9158*0.0023 
0.9292 i 0.0024 
0.9427 f 0.0026 
0.9568 f 0.0027 
0.9704 f 0.0029 
0.9853 i0.0030 
0.9997 f 0.0031 
1.0149 f 0.0032 
1.0295 f 0.0034 
1.0454 f 0.0035 
1.061 1 f 0.0037 
1.0775 f0.0038 

35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

(X,) 

1.0943 f 0.0040 
1.1 120 f 0.0043 
1.1287 f 0.0044 
1.1461 f0.0046 
1.1632 50.0048 
1.1812 f 0.0050 
1.1997f0.0052 
1.2185 f 0.0054 
1.2368 f 0.0056 
1.2561 f 0.0058 
1.2753 10.0060 
1.2950 f 0.0062 
1.3146 f 0.0065 
1.3344f0.0068 
1.3549 f 0.0071 
1.3759f0.0074 

The values (X,,) vary approximately exponentially with n for n 3 15, and a linear 
plot of log (X,,) against n gives 

ln(X,,) = an + p 
with a = 0.0153 f 0.0004 and p = -0.455 f 0.020. No term proportional to log n is 
expected, as the exactly known exponent 8 = 1 has been incorporated in our choice 
of p, , .  These values agree with the result a = 0.015 52i0.000 04 obtained by 
phenomenological renormalisation [ 121, and a = 0.015 53 i 0.000 05, p = -0.456 f 0.010 
obtained by extrapolation of the exact series coefficients [13]t. A plot of n log(Z,,+,/Z,,) 
against 1 /  n is an approximate straight line which extrapolated to n + CO gives I,, - nZv+' 
with v = 0.646 * 0.004. This value of v is also in agreement with earlier, more precise 
estimates. The advantage of the present technique is that it can be used with equal 
ease in higher dimensions, where the existing estimates are much less precise [ 141. 

We would like to thank Dietrich Stauffer for useful advice, critical comments on the 
manuscript and references to earlier literature. DD thanks Sonder Forschung Bereich 
125 and PML the Max Planck Gesellschaft for financial support. 

t Our parameter a = -log(4xC) is in the notation of the authors in [12]. 
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